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ABSTRACT:
Robust detection of acoustically quiet, slow-moving, small unmanned aerial vehicles is challenging. A biologically

inspired vision approach applied to the acoustic detection of unmanned aerial vehicles is proposed and demonstrated.

The early vision system of insects significantly enhances signal-to-noise ratios in complex, cluttered, and low-light

(noisy) scenes. Traditional time-frequency analysis allows acoustic signals to be visualized as images using spectro-

grams and correlograms. The signals of interest in these representations of acoustic signals, such as linearly related

harmonics or broadband correlation peaks, essentially offer equivalence to meaningful image patterns immersed in

noise. By applying a model of the photoreceptor stage of the hoverfly vision system, it is shown that the acoustic pat-

terns can be enhanced and noise greatly suppressed. Compared with traditional narrowband and broadband tech-

niques, the bio-inspired processing can extend the maximum detectable distance of the small and medium-sized

unmanned aerial vehicles by between 30% and 50%, while simultaneously increasing the accuracy of flight parame-

ter and trajectory estimations. VC 2022 Author(s). All article content, except where otherwise noted, is licensed under
a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1121/10.0009350
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I. INTRODUCTION

Passive distributed acoustic sensor arrays have been

used for detecting and tracking moving aircraft,1–8 ground

vehicles,9–15 and unmanned aerial vehicles (UAV).16–25

Several array configurations have been explored, including

the small aperture circular array,4 the L-shaped planar

array,7 a tetrahedral array,6 and the widely distributed small

arrays.10–12 By analysing the acoustic signals received by

the individual microphones, a variety of applications can be

realized, including object classification, target tracking, and

simultaneous localization and mapping (SLAM).26 With the

fast development of UAV platforms, these systems have

become a very useful tool for a wide variety of applica-

tions,27 including structure inspection,28 surveillance,29 3D

mapping,30 and acoustic tomography.31 Nevertheless, an

unauthorized UAV may pose a threat to an airport, individu-

als, or military bases. Therefore, long range detection and

precise location of the UAV becomes important for safety

and security purposes.

The acoustic signature emitted by UAVs makes their

passive detection and tracking possible. Depending on the

spectral components of the acoustic signal, two traditional

processing techniques for flight parameter estimation are

readily available. For propeller-driven aircraft and helicopters

that emit strong harmonic tones a narrowband processing

technique20,32 may be used to estimate the flight parameters.

The approach is based on identification of the instantaneous

frequency of the motion-induced, Doppler shifted acoustic

signature of the aircraft. A broadband processing technique,20

which measures the temporal variation of the time delays

between multiple microphone pairs, may also be used.

Compared with the narrowband technique, the broadband

approach is more flexible because it can handle UAVs that do

not emit strong narrowband tones or fixed harmonic frequen-

cies. Accurate estimation of flight parameters is best achieved

through application of both methods when a UAV overflies

the array. Indeed, using such approaches several researchers

have reported detection ranges for aircraft and UAVs in

excess of 2 km.2,17,21,33 When a UAV is far away from the

microphones, however, the signal is weak compared to noise

and both broad and narrowband approaches struggle to

achieve reliable results. This raises a challenge for UAV

detection, localization, and tracking, as observation of the

acoustic signal at long range is usually highly desirable.

Similar signal conditions exist in the natural world. For

instance, the spread of luminance in naturally lit scenes typi-

cally covers a very large dynamic range, and the details in

dark regions are immersed in noise.34 In this regard, insect

a)A portion of this work was presented in “Detection of remotely piloted

aircraft using bio-acoustic techniques,” presented at the 177th Meeting of

The Acoustical Society of America, Lexington, KY, USA, May 2019.
b)Electronic mail: anthony.finn@unisa.edu.au, ORCID: 0000-0002-2690-
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visual systems, such as that of the hoverfly, have proven to

be a powerful information capture system.35 Similar to the

visual scenes, acoustic signals can be converted into

“images” using spectrograms and correlograms. These tradi-

tional techniques thus permit us to visualize the (one-dimen-

sional) acoustic signal as (two-dimensional) images based

on a corresponding time-frequency analysis. With the nar-

rowband method, detected acoustic signals are usually visu-

alized as spectrograms and the frequency of harmonics

extracted. For the broadband technique correlograms are

used, from which the time delays can be obtained. In this

sense, the acoustic signal of interest, in the form of harmon-

ics or correlation peaks, can be presented as patterns in two-

dimensional arrays or matrices and analysed using vision

processing techniques.

The particular model used in this study is described in

more detail below in Sec. III and the references therein. It

derives from a fully elaborated biologically inspired vision

(BIV) model that, in addition to enabling scene agnostic,

sub-pixel motion detection via electro-optic and infrared

sensor modalities, can apply signal conditioning to sensor

output prior to downstream processing. The model is based

on multiple layers of non-linear dynamic adaptive compo-

nents measured or suspected from responses of neurons in

pathways of the hoverfly brain. Uniquely, however, we have

transitioned the techniques from biological finding and theo-

retical simulation to embedded hardware implementation

running in real time.36 The approach enhances and sup-

presses elements of related and unrelated signal and noise,

providing crisp sub-pixel/low-amplitude signal detection

and classification for these difficult target sets.37

This vision-inspired method differs substantially from

techniques that draw upon the biology of auditory sys-

tems.38,39 The technique also differs from the well-known

biologically inspired convolution neural network (CNN)

method.40,41 A CNN is an adaptive algorithm that is based

on interconnected nodes (neurons) arranged in a layered

structure to resemble the human brain. The CNN learns

from pre-supplied data and can thus be trained to classify

the data by breaking down the input layers into layers of

abstraction. It is trained using many examples, by the way in

which the individual neurons are connected and by the

strength (weight) of those connections. The weights are

automatically adjusted during training according to specified

learning rules until the algorithm performs appropriately.

The last layer of the CNN indicates whether the target class

(in our case a UAV signature) was present within the data.

This means that while the hidden layers of a CNN may

extract and enhance features the core task is typically classifi-

cation, and any decision making is based on patterns in the

training data. This contrasts with the proposed algorithm in

this paper, which is focused on enhancement only: classifica-

tion of the data is still required post facto. This means the two

approaches are not mutually exclusive. In fact, there is reason

to believe a CNN trained on outputs from the BIV model

could be smaller and more accurate than one trained on raw

data (due to enhancement of the signals relative to the noise).

This paper is organized into six sections including the

present one. Section II briefly describes the traditional meth-

ods of UAV acoustic signal visualization, including the nar-

rowband and broadband processing. Section III describes

the principles of the bio-vision technique. In Sec. IV field

trial used to gather the experimental data is explained. The

results of the comparisons between the traditional and bio-

inspired methods are given in Sec. V. Finally, in Sec. VI this

work is summarized and possible future investigations

suggested.

II. UAV ACOUSTIC SIGNAL VISUALIZATION

A. Notations and assumptions

Passive acoustic localization9,33 is based on the following

assumptions. First, the atmosphere is assumed to be an iso-

speed sound propagation medium, with the speed of sound

denoted as c. Second, the UAV is assumed to travel in a

straight line at constant speed V and altitude h for the duration

of the inter-observation period, as shown in Fig. 1. The posi-

tion of the UAV at time s is uðsÞ ¼ ½xðsÞ; yðsÞ; zðsÞ�T , which

can be expressed in Cartesian coordinates as9

xðsÞ ¼ dc cos ac þ ðs� scÞV sin ac;

yðsÞ ¼ dc sin ac � ðs� scÞV cos ac;

zðsÞ ¼ h; (1)

where sc, dc, and ac are the time, the ground range and the

bearing angle at the closest point of approach (CPA) to the

origin ½0; 0; 0�T , respectively, h is the UAV altitude, and

Rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

c þ h2
p

is the slant range of CPA. In this case, the

UAV trajectory can be explicitly described by five flight

parameters fV; sc; h; dc; acg. Therefore, the UAV position

can also be expressed as uðs; kÞ, where k ¼ ½V; sc; h; dc; ac�T
is the flight parameter vector. From Eq. (1), the UAV veloc-

ity is _u ¼ ½V sin ac;�V cos ac; 0�T . Note that these assump-

tions are only required to be satisfied during the inter-

observation period, which is typically short compared to

flight dynamics.

The UAV position uðsÞ can be described in spherical

coordinates. Equivalently, uðsÞ ¼ rðsÞ � qðsÞ, where rðsÞ is

the slant range at time s, and qðsÞ is the direction-of-arrival

(DOA) unit vector defined as

qðsÞ ¼ cos hðsÞ cos /ðsÞ; cos hðsÞ sin /ðsÞ; sin hðsÞ½ �T ; (2)

in which hðsÞ and /ðsÞ are the bearing and elevation angles,

respectively. The non-linear relationship between the bear-

ing and elevation angles and the source location is given by

hðsÞ ¼ tan�1 yðsÞ
xðsÞ

� �
;

/ðsÞ ¼ tan�1 zðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðsÞ þ y2ðsÞ

p
 !

: (3)

The acoustic array here comprises a general form, that

has a wide aperture with NRS small aperture arrays, each
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with NCH microphones (each microphone representing a dif-

ferent channel). The j-th channel of the i-th small acoustic

array is denoted as Si;j; 1 � i � NRS; 1 � j � NCH located at

position si;j ¼ ½xi;j; yi;j; zi;j�T . The central position of the i-th
small microphone array is denoted as si ¼ ½xi; yi; zi�T , which

can be obtained through si ¼ ð1=NCHÞ
PNCH

j¼1 si;j. In this

paper, one small microphone array is located at the origin

point of the coordinate system (see Fig. 6 later).

B. Narrowband technique

The narrowband technique suits acoustic signals that

contain strong narrowband tones. The acoustic signals are

visualized as spectrograms using time-frequency analysis.

Figure 2 shows the power spectral density (in dB) of a

UAV observed by a single ground microphone. As well as

the harmonic tones emitted by the UAV, the wind noise

and acoustical Lloyd’s mirror effects are also visible. The

wind noise exists throughout the observation period, its

spectral width varying in accordance with different gust

intensities. Although the maximum frequency of wind

noise contamination can reach 500 Hz and simply high-

pass filtering the signal could eliminate wind noise, consid-

erable harmonic information could also be discarded,

which is not desirable.

The Lloyd’s mirror effect, generated by reflection of

acoustic waves by the ground, is clearly visible when the

UAV is near the array. This introduces a slow-change varia-

tion in the spectrogram, making some harmonic components

hard to detect. For instance, in Fig. 2 the amplitude of the

harmonic signal around 600 Hz at time 10 s is almost as low

as the noise floor, which results in a breakpoint in the har-

monics of this order. It is noted that the Lloyd’s mirror

effect can be utilized in estimating some flight parame-

ters.42,43 However, the Lloyd’s mirror effect is distinct

within only a short period when the airborne source flies

over the acoustic sensor and thus not suitable for long-

distance detection.

To mitigate the wind noise and Lloyd’s mirror effect,

the cepstrum filtering technique is used.44 The (power) ceps-

trum of a signal x(t) is defined as

~xðqÞ ¼ F�1 log jXðf Þj2
n o

; (4)

where Fð�Þ is the Fourier transform and Xðf Þ ¼ F xðtÞ
� �

is

the spectrum of signal x(t). q is the quefrency variable of the

cepstrum. After performing the cepstrum transform on the

spectrogram X(f, t), the outputs form a new image called the

cepstrogram ~xðq; tÞ.
Figure 3 shows the cepstrogram for the same UAV con-

sidered in Fig. 2. Unlike the spectrogram, in the cepstrogram

the power of wind noise is concentrated within a fixed que-

frency range. The Lloyd’s mirror is distributed within

0 < q < 0:01 s and 0 � t < 20 s, corresponding to the UAV

being within a range of about 300 m from the array. The har-

monic components are distributed near q � 0:02 s, which is

clearly distant from both the Lloyd mirror and the wind

noise. Therefore, by applying a bandpass filter that retains

the harmonic components on the cepstrogram we can effec-

tively distill the essential harmonics. Figure 4(a), which con-

tains only the harmonics, shows the result of cepstrum

filtering. Figure 4(b) shows the background spectrogram and

contains only the Lloyd mirror and wind noise. Using this

approach, we can eliminate the influence of the unwanted

signals.

FIG. 1. (Color online) Flight model and the geometrical configuration of

acoustic array. The UAV flies past the array in a straight line at constant

speed and altitude. Red triangles: passive acoustic array; grey dashed line

with arrow: trajectory projection on the x-y plane.

FIG. 2. (Color online) Power spectral density vs time (spectrogram) for a

UAV transit observed on a ground microphone 2 m above ground.

FIG. 3. (Color online) The cepstrogram for the same UAV considered in

Fig. 2.
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After cepstrum filtering, the harmonic spectrogram is

then processed for pitch detection. A number of traditional

methods are available for high-accuracy pitch detection. For

example, in time domain the zero-crossing rate (ZCR),45

robust algorithm for pitch tracking (RAPT)46 and YIN esti-

mators47 may be used, while in the frequency domain there

are component frequency ratios,48 cepstrum analysis,44 opti-

mum comb filters,49 and harmonic product spectrum

(HPS).50 In this paper, since the acoustic signal has been

visualized into spectrogram, the HPS method for pitch esti-

mation is adopted.

The tonal frequency emitted by the UAV at time s is

received by the i, j-th acoustic sensor at time t. This can be

expressed as23

fi;jðt; kÞ ¼ fi;jðsþ Dsi;jðs; kÞ; kÞ

¼ f0 1þ
pðs; kÞ � si;j

� �T
_p

jjpðs; kÞ � si;jjj

( )�1

; (5)

where Dsi;jðs; kÞ is the travel time from the UAV to the

i; j-th microphone, i.e.,

Dsi;jðs; kÞ ¼ jjuðs; kÞ � si;jjj=c: (6)

Using the relation t ¼ sþ Dsi;jðs; kÞ and substituting it into

Eq. (6), we have

fi;jðt; kÞ ¼ f0

c2

c2 � v2

	 

� 1�

v2ðt� scÞ þ vy0i;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � v2Þ ðdc þ x0i;jÞ

2 þ h2

h i
þ c2 vðt� scÞ þ y0i;j

� �2r
8><
>:

9>=
>;
;

(7)

where s0i;j ¼ ½x0i;j; y0i;j; z0i;j�
T ¼ RðacÞsi;j. RðaÞ is the rotation

matrix written as

RðaÞ ¼ pr

cos a �sin a 0

sin a cos a 0

0 0 1

2
64

3
75: (8)

For the acoustic sensor located at the origin, Eq. (7)

reduces to the same form as in Ref. 32.

It is worth noting that not all UAVs exhibit strong

acoustic harmonics. Consequently, the narrowband process-

ing is not suitable for all UAV signatures.

C. Broadband technique

The other traditional method for detecting and locating

acoustic signatures is based on broadband processing.

Unlike the spectrograms in the narrowband technique,

the broadband processing uses correlograms to visualise the

acoustic signals. Suppose the acoustic signal emitted by the

UAV at time s arrives at two microphones (the m-th and

n-th channels) of the i-th array at time t, the time delay

between these channels can be estimated from the correlo-

gram Ci;mnðb; tÞ, which is obtained through the generalized

cross correlation and phase transform (GCC-PHAT)

method51,52

Ci;mnðb; tÞ ¼ F�1 Wðf Þ
Xi;mðf ; tÞX�i;nðf ; tÞ
jXi;mðf ; tÞX�i;nðf ; tÞj

( )
; (9)

where b is the lag. Xi;mðf ; tÞ and Xi;nðf ; tÞ are the complex-

valued spectrograms of the m-th and n-th channels of the

i-th array, respectively. W(f) is the spectral windowing

function. The time delay between these two channels can

be obtained by searching the peak in the correlogram,

i.e.,

di;mnðtÞ ¼ arg max
b

Ci;mnðb; tÞ: (10)

When the flight trajectory is fully described by Eq. (1),

the time delay di;mnðtÞ is also referred as di;mnðt; kÞ.
According to Eq. (6), it can be rewritten as

FIG. 4. (Color online) Result of cepstrum filtering applied on the spectro-

gram in Fig. 2. (a) Harmonic spectrogram which contains acoustic harmon-

ics only; (b) Background spectrogram, which contains the wind noise and

Lloyd mirror.
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di;mnðt; kÞ ¼ Dsi;mðs; kÞ � Dsi;nðs; kÞ

¼ jjuðs; kÞ � si;mjj � jjuðs; kÞ � si;njj
c

; (11)

where Dsi;mðs; kÞ and Dsi;nðs; kÞ are the travel time from the

UAV to the microphone channels Si;m and Si;n, respectively.

Since the channels were placed near to each other within an

array, the relationship between the sound emitted at time s and

received at time t can be treated as a plane wave across the

small array. Thus, considering t ¼ sþ Dsiðs; kÞ and solving

Eq. (6) along with Eq. (1), the relationship between s and t for

the i-th acoustic array centered at si can be expressed as

s¼ sc �
y0i
v
þ

c2 vðt� scÞ þ y0i
� �
vðc2� v2Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2� v2Þ ðdc þ x0iÞ

2þ h2

h i
þ c2 vðt� scÞ þ y0i

� �2r
c2� v2

:

(12)

When the centre of the small microphone array is located at

the origin point, i.e., si ¼ s0i ¼ ½0; 0; 0�
T
, Eq. (12) reduces to

the same form as Ref. 9.

Besides the correlogram, the acoustic signal in broad-

band processing can also be visualized into the global coher-

ence field (GCF).53 A GCF shows the plausibility for an

acoustic source. For the i-th acoustic array, it can be calcu-

lated as

Giðu; tÞ ¼
1

M

XM

k¼1

Ci;kðbiðuÞ; tÞ; (13)

where M ¼ ð 2
NCH
Þ is the number of microphone pairs. biðuÞ

is the expected at time delay of the i-th small acoustic array

when the acoustic source is at position u. The GCF can also

be presented as a 2-dimensional image in terms of the bear-

ing and elevation angles, based on the DOA unit vector q

defined in Eq. (2).

III. BIO-VISION PROCESSING

A complete biologically inspired vision (BIV) model is

a multi-stage non-linear system with adaptive feedback both

within and between stages. This model has previously been

used only on electromagnetic data but has shown great

promise in estimating optic flow54 and detecting targets in

clutter34 in both visual36 and infrared37 portions of the spec-

trum. Even using the first stage of the model in isolation has

yielded improved clarity in poor lighting conditions55,56 and

better target detection.57,58

The photoreceptor cell (PRC), which is responsible for

dynamic range reduction of the input signal, provides the

first stage of the biological visual system. Photoreceptors

dynamically adjust the dark and bright regions of input

images through temporal pixel-wise operations.59

Figure 5 shows the elaborated mathematical model of

the bio-vision photoreceptor.34 It includes four stages: (1)

the adaptive filtering; (2) the low-pass divisive feedback,

which is also called as the DeVries-Rose stage; (3) the expo-

nential low-pass divisive feedback, which is known as the

Weber stage; and (4) the non-linear Naka-Rushton trans-

form. This four-stage model is functionally equivalent to the

processing conducted in a primate cone.60 The detailed

implementation is described as follows.

A. Adaptive filter

This stage includes low-pass filtering with a dynamic

cut-off frequency, the value of which depends on the adapta-

tion state (long-term average value of the element). This is

followed by a variable gain control that acts to reduce the

differences over a wide range of acoustic intensities by

using a larger gain when the signal is low compared to when

it is high. In visual images the power of the signal compo-

nent is approximately inversely proportional to its spatial

frequency, whereas the noise component is essentially

white, i.e., constant over all frequencies. There is therefore a

frequency above which the signal-to-noise ratio (SNR) falls

below an acceptable level and a low-pass filter should be

employed. The threshold at which the SNR drops varies in

accordance with the intensity (brightness) of the input signal

because the majority of the noise is in the sensor itself and

therefore independent of the scene being observed.

Similarly, in acoustic applications the elements that relate to

low amplitude acoustic signals must be more heavily filtered

than those that receive high amplitude inputs since their

FIG. 5. (Color online) Mathematical model of the photoreceptor cells of a hoverfly’s early vision system.
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SNR will be low and can be increased by the reduction of

high frequency signal components.

To begin, the adaptation state is calculated as

‘1;tk ¼ fLPFðIin; fc1
; ‘1;tk�1

Þ

¼ 2pfc1

fr
Iin;tk þ 1� 2pfc1

fr

� �
‘1;tk�1

; (14)

where fc1 is the corner frequency of this stage and fr is the

frame rate, which is the reciprocal of the time step interval.

Then the low-passed filtered result ‘1;tk passes through a

tone-mapping (bit depth normalisation) process, which is

realized via a Naka-Rushton transform61 in order to estimate

the adaptation state, Inr;tk , expressed as

Inr;tk ¼
‘1;tk

‘1;tk þ Imid1

; (15)

where Imid1 is the mid-point value chosen from the empirical

data set. By using the adaptation state it is possible to inde-

pendently classify each element of the incoming data by its

average intensity, and hence estimate the filtering required

to improve the SNR and the gain required to amplify low

intensity sections if the input signal. The adaptive LPF is

realized through

‘2;tk ¼ fLPFðIin;tk ; ffm;tk ; ‘2;tk�1
Þ; (16)

where ffm;tk is the adaptive corner frequency calculated as

ffm;tk ¼ ðfmax � fminÞInr;tk þ fmin: (17)

In Eq. (17), fmax and fmin are the bio-vision parameters corre-

sponding to the maximal and minimal adaptation rates of

the temporal LPF, respectively, and are set depending on the

level of noise in the sensor relative to the intensity of the

recorded signal.

Last, an operation to compress the dynamic range is

applied, using a non-linear adaptive gain which is given by

gaf;tk ¼ ðgmax � 1Þð1� Inr;tkÞ þ 1: (18)

The gain factor gaf;tk compresses the dynamic range by

amplifying the lower values more than the higher ones.

The output signal of this stage is expressed as

Iaf;tk ¼ gaf;tk‘2;tk : (19)

The initialization of this stage is derived from the

steady-state response, i.e., ‘1;t0 ¼ ‘2;t0 ¼ Iin;t0 ; Inr;t0 ¼ Iin;t0=
ðIin;t0 þ Imid1; Iaf;t0 ¼ Iaf;t0 ½ðgmax� 1ÞImid1=ðIin;t0 þ Imid1Þ þ 1�,
where Iin;t0 is the initial input to the bio-vision model.

B. Low-pass divisive feedback (DeVries-Rose)

The second stage incorporates rapid, short-term adap-

tion of the input intensities, allowing the element to respond,

but quickly adapt, to adjust for any changes. As shown in

Fig. 5, it has a feedback loop with a LPF such that

‘3;tk ¼ fLPFðIdvr;tk�1
; fc2; ‘3;tk�1

Þ; (20)

where Idvr;tk�1
is the output of the previous time step, and fc2

is the corner frequency of this stage. Function fLPF is defined

in Eq. (14). The filtered signal from the previous time step

serves as the denominator in the divisive feedback loop (i.e.,

divided by the input of this stage), which can be written as

Idvr;tk ¼ Iaf;tk=‘3;tk : (21)

The steady state-behaviour follows a square root, thus the

initialization of this stage at time step t0 is Idvr;t0 ¼
ffiffiffiffiffiffiffiffi
Iaf;t0

p
,

which is also called the DeVries-Rose law. Due to the low-

pass filter, this stage produces overshoots and undershoots at

incremental and decremental steps, respectively. The result

of this stage is an output that responds to a change in the

input with no time delay but will decay over time, asymptot-

ically approaching the square-root of the input value, if the

input remains unchanged. This preserves the presence and

temporal coherence of changes while simultaneously reduc-

ing the required bandwidth of the signal. The operation is

similar to a leaky high-pass filter with the addition of com-

pressive non-linearity. Weighting with current and previous

iterations, this process supports temporal coherency when

processing input sequences.

C. Exponential low-pass divisive feedback (Weber)

The third stage is the Weber model, which contains an

exponential operation in the feedback loop. It is parametri-

cally similar to the previous DeVries-Rose stage, but pro-

vides long-term, slow adaptation due to the lower corner

frequency in the filter, but includes the exponential to alter

the rate of change of the system to a disturbance. As with

the previous stage the temporal filtering is not on the main

signal path, only in the feedback. This allows the model to

adapt to slow changes in intensity while maintaining tempo-

ral coherency and resistance to high-frequency changes in

the overall scene. The low-pass feedback loop in this stage

is

‘4;tk ¼ fLPFðIweber;tk�1
; fc3; ‘4;tk�1

Þ; (22)

where Iweber;tk�1
is the output at previous time step and fc3 is

the corner frequency of this stage. The filtered signal is first

manipulated by an exponential operation and then divided

by the input signal of the current time step. It is written as

Iweber;tk ¼ Idvr;tk=ae‘4;tk ; (23)

where a is the exponential sensitivity of the system.

The initialization of this stage comes from the steady

state function that Iweber;t0 ¼ Idvr;t0= exp ðIweber;t0Þ with the

solution Iweber;t0 ¼ WðIdvr;t0Þ, where Wð�Þ is the Lambert W
function. When ln ðxÞ � x, the solution can be approxi-

mated as Iweber;t0 ¼ ln ðIdvr;t0Þ. This logarithmic relationship

is referred to as the Weber law, which is the name of this

stage. The exponential scaling enables this stage to perform
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significant non-linear rescaling of the signal, which can

drastically reduce the intensity of the largest elements.

D. Non-linearity (Naka-Rushton)

The final stage of the photoreceptor is the static non-

linearity Naka-Rushton transform process expressed as

Iout;tk ¼
Iweber;tk

Iweber;tk þ Imid2

; (24)

where Imid2 is an empirically selected positive offset. As a

result, the response becomes increasingly non-linear as the

intensity values rise.

IV. FIELD TRIAL EXPERIMENT

A. Field trial equipment

Field trials were conducted at a site known as Evett’s

Field at the Woomera Test Range, South Australia. The ter-

rain is flat and open, has sandy/rocky ground, no grass and

sparse vegetation. Aside from an equipment hut 300 m west

of the microphone array there are no substantial scattering

objects obstructing line of sight propagation. As shown in

Fig. 6(a), Evett’s Field has two runways (Runway #1 and

Runway #2), each with a length of around 2 km. The acous-

tic array was located to the south eastern end of the two

runways. An array of 49 microphones was deployed in a

fractal pattern of 7 groups of 7 smaller arrays (Fig. 6). Each

small array comprised a microphone at its centre (height

2 m) and two sets of three microphones (height 0.15 m) at

radii of 1 m and 5 m, each separated in angle by 120	. The 7

smaller arrays were themselves arranged in a similar pattern

of equilateral triangles, the inner triangle having 50 m sides,

the outer 100 m sides. The position of each microphone was

located using real time kinematic carrier phase differential

global positioning system, which has a 1r accuracy of

60.03 m.

The sound fields at each array were measured using

ECM800 10 mV/Pa condenser microphones sampled at

44.1 kHz using an 8-channel, 24-bit Data Acquisition

(DAQ) recorder with 107 dB spurious free dynamic range.

Accurate time stamping of the data were obtained from a

GPS-derived one pulse per second (1PPS), sampled using

channel one of the DAQ.

B. Flight scenarios

Different classes of UAVs were used during the trials,

including a DJI Matrice 600 (15 kg, 1.7 m diameter, hexa-

rotor), a Skywalker X-8 (3.5 kg, 2.1 m wingspan), and a DJI

Mavic Air (0.5 kg, 0.2 m, quad-rotor). The flight scenarios

reported in this paper are shown in Table I. The Matrice 600

was equipped with an acoustic payload which continuously

FIG. 6. (Color online) (a) Field trial

deployment. (b) The distribution of

large acoustic array and (c) small

acoustic array (north is up for all

images).
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generated a fixed frequency set of strong narrowband tones

superimposed onto a broadband random component, with

time-invariant narrowband energy extending from 50 Hz to

at least 5 kHz in 50 Hz steps. This payload simulated a UAV

propelled by a petrol-driven engine with constant tonal out-

put regardless of flight dynamics, i.e., an idealised such sig-

nature. The Skywalker X-8 (petrol-driven) and Mavic Air

(electrically powered) were flown without acoustic pay-

loads. The flight scenarios are described throughout the

paper as FS1 (Matrice 600), FS2 (Skywalker X-8), and FS3

(Mavic Air), all of which flew along Runway #2 in a north-

erly direction. All the UAVs listed in Table I were mounted

with an iMet XQ UAV sensor, which recorded the UAV’s

GPS location and local meteorological factors (temperature,

pressure, relative humidity) at a rate of 1 Hz. The GPS data

from the iMet sensor were used as ground truth for the UAV

flight trajectories.

V. RESULTS AND DISCUSSION

Once the data acquisition was completed, the signals

were processed using both the narrowband and broadband

techniques. Note that as the narrowband processing is only

suitable for UAVs with strong harmonic signals, the tech-

nique was only applied to FS1. For the other two flight sce-

narios, there are not obvious fixed harmonic tones. This was

because, despite FS2 having a petrol engine, the changing

demands on the engine during flight resulted in an acoustic

signature with high variability in the dominant frequencies.

Consequently, FS2 and FS3 were not suitable for

narrowband processing. The broadband technique, however,

was applied to all three flight scenarios. The processing

details and results, including the improvements obtained by

applying the proposed bio-vision technique, are described

below.

A. Narrowband technique

The data from each microphone was pre-filtered through

a low-pass finite impulse response (FIR) anti-aliasing filter

(AAF) with a passband cut-off of 5 kHz, passband ripple of

0.1 dB and stop band attenuation of 100 dB, prior to down-

sampling by a factor of 5. The spectrograms were obtained

through time-frequency analysis, with a digital Fourier trans-

form block size of 4096 samples, 75% overlap between two

consecutive data blocks, Hann windowing, and 2 times zero-

padding. When combined with the bio-processing model the

BIV parameters were set as fc1 ¼ 1 Hz, Imid1 ¼ 0:02; fmax

¼ 2 Hz, fmin ¼ 0:5 Hz, gmax ¼ 40; fc2 ¼ 1 Hz, fc3 ¼ 1 Hz,

Imid2 ¼ 0:02. These parameters were selected using an empir-

ical process and were not optimised against any quantifiable

criteria. Figure 7(a) shows the normalized (with respect to

maximum power spectral density) spectrogram of FS1

(Matrice 600 with acoustic payload) obtained from the first

channel of the microphone array RS1, while Fig. 7(b) shows

the same spectrogram after bio-processing. With the help of

adaptive filtering and nonlinear transforms, the bio-

processing has enhanced the related acoustic harmonics and

suppressed the unrelated noise. Two particular regions, which

correspond to ranges of <300 m and around 1000 m from the

array and are marked as Z1 and Z2 in Fig. 7, are expanded to

more clearly show the improvement of the bio-processing

approach. Z1 represents the high-frequency region when the

UAV was near the acoustic array. In this case, the narrow-

band harmonics were low in power, but quickly varied due to

the high harmonic order. Z2 denotes the low-frequency

region when the UAV is far away from the array. Figures

7(c) and 7(e) show enlargements of the Z1 and Z2 regions of

FIG. 7. (Color online) Narrowband spectrograms with (a) and without (b) biologically inspired vision (BIV) processing. Images on the right show enlarged

regions for Z1 and Z2. BIV processing led to improved contrast between the signal harmonics and the background.

TABLE I. Flight scenarios. (N: North, S: South.)

Label UAV Payload Height(m) Profile

FS1 Matrice 600 Acoustic 100 Runway#2 S!N

FS2 Skywalker X-8 N/A 210 Runway#2 S!N

FS3 Mavic Air N/A 100 Runway#2 S!N
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the normalized spectrogram, respectively. Some harmonics

are barely visible as their amplitudes are insufficient to be

clearly identified from the background. Figures 7(d) and 7(f)

are the same two regions after BIV processing. The former

illustrates a more distinct, clearer set of harmonics up to

t¼ 20 s and the latter demonstrates an obvious harmonic sig-

nal around t¼ 90 s.

Both the original spectrogram and the one processed

using BIV were then passing through the same cepstrum fil-

ter, which removed the spectral signal with quefrency range

jqj < 0:01 s to eliminate the influence of wind noise and

Lloyd’s mirror. As described in Sec. II, the Doppler fre-

quency (pitch) received by each microphone was obtained

by searching the peaks in the HPS algorithm. For each small

microphone array, the pitch data were complemented by the

first four channels (Ch1–Ch4), since they were located very

close to each other. Figures 8(a) and 8(b) depict the esti-

mated pitch frequency for the acoustic signal of FS1

obtained from RS1 without and with bio-vision processing,

respectively. To quantitatively evaluate the improvement of

our proposed method, we adopted the peak signal-to-noise

ratio (PSNR) n, which is defined as

n ¼ 20 log10

maxðIÞ
RMSEðnIÞ

	 

ðdBÞ; (25)

where maxðIÞ is the maximum of the intensity and RMSE

ðnIÞ is the root mean square error of the intensity noise. The

data points in Fig. 8 were used for flight parameter estima-

tion by the non-linear least squares (NLS) regression given

by

k̂ ¼ arg max
k

XNs

m¼1

XNt

k¼1

wmðtkÞ f̂ mðtkÞ � fmðtk; kÞ
� �2

; (26)

where k̂ ¼ ½V̂ ; ŝc; ĥ; d̂c; âc�T are the estimates of k; wmðtkÞ
is the weighting function related to the PSNR n of the m-th

microphone of time step tk. The NLS fitting results are

marked as the red solid lines, which stop at the low tracking

confidence regions with severe data deviations and PSNRs

lower than n¼ 6 dB. The pitch estimated by traditional

methods has the highest PSNR of 20.6 dB and the maximum

visible period of 70.9 s, as shown in Fig. 8. As a contrast,

the PSNR with BIV processing can be as high as 30.1 dB

with a maximum visible period of 96.2 s, resulting in a

10 dB improvement on PSNR, and a 35.7% improvement on

the maximum visible period.

The flight parameters estimated from the NLS regres-

sion are depicted in Table II. The error values are 1r for the

traditional and bio-vision methods and derived from the

iMet GPS sensor performance envelope for iMet (ground

truth) data. The estimates of flight parameters appear

slightly biased, mainly because of the wind noise.

Compared with the iMet sensor data, however, the estima-

tion of both traditional and bio-vision processing are

acceptable.

The tracks of the UAV trajectory estimated by the

acoustic array are superimposed onto the satellite photo-

graph (Fig. 9). The red triangles are the locations of the

small microphone arrays (RS1–RS7). In Fig. 9(a), the gray

circles are the trajectory measured by the iMet XQ sensor

GPS records, while the blue circles represent the UAV mea-

sured acoustically as it travels about 1134.5 m along the

Runway #2, corresponding to a maximum slant range of

1147.5 m. As a comparison, the green circles in Fig. 9(b)

show the measured UAV trajectory up to 1509.1 m, corre-

sponding to a slant range of 1519.2 m. This indicates that for

flight scenario 1, the maximum detection range was

improved by approximately 33%.

B. Broadband technique

For the broadband technique, the acoustic data were

visualized as correlograms. For each small microphone array,

7 channels (Ch1–Ch7) formed Np¼ 21 sensor pairs. The cor-

relograms were implemented through the GCC-PHAT algo-

rithm in the frequency domain, with a FFT window size of

8192 points, 2 times zero-padding, 50% overlapping, and

Kaiser windowing. Note that there was no downsampling

in this stage. The time step Dt of the correlograms was

0.093 s, resulting in a frame rate fr of 10.77 Hz. When

FIG. 8. (Color online) Fundamental frequency estimation for the acoustic

signal (a) without BIV processing and (b) with BIV processing for the cen-

tre microphone array (RS1) of flight scenario 1. Red solid line: NLS fit.

BIV processing resulted in a higher PSNR overall, and the ability to track

the signal for longer.

TABLE II. Flight parameter estimation with narrowband technique.

Method V̂ (m/s) ŝc(s) d̂ c(m) ĥ(m) âc(deg.)

iMet data 15.0 –4.2 136.3 101.2 182.0

Traditional 15.0 –4.6 142.9 97.9 182.2

Bio-vision 15.0 –4.2 144.1 99.5 182.1
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processing with the bio-vision, the input images were the

correlograms, and the BIV parameters were set as fc1

¼ 1:5 Hz, Imid1 ¼ 0:7; fmax ¼ 2:5 Hz, fmin ¼ 0:1 Hz, gmax

¼ 10; fc2 ¼ 1:5 Hz, fc3 ¼ 1:5 Hz, Imid2 ¼ 0:7. Once again,

these parameters were not optimised against any objective

criteria. Figures 10(a) and 10(c) show the correlograms of

the first microphone pair (Ch1-Ch2) and the last micro-

phone pair (Ch6-Ch7), respectively. The former represents

the minimum distance between two microphones, the latter

the maximum. The two corresponding correlograms

processed using bio-vision are shown in Fig. 10(b) and

10(d). It is worth noting that the correlation peak has a

higher amplitude and is temporally prolonged due to the

amplification and filtering present in the first stage of the

bio-inspired processing chain. There is also a “shadow”

after the fast varying correlation peaks [as in Fig. 10(d)].

This is mainly due to the low-pass filter in the divisive

feedbacks stages of the bio-vision model. However, the

influence of this effect is negligible, since the delays were

estimated through the peak searching of the correlograms

and if anything increased the local contrast of said peaks.

Figures 11(a) and 11(b) demonstrate the estimated time

delays dsmn of the 21 sensor pairs without and with bio-

vision processing, respectively. The PNSRs were also

FIG. 10. (Color online) Correlograms for RS1 and FS1 (a) without and (b) with BIV processing.

FIG. 9. (Color online) Estimated flight trajectory by narrowband technique

of FS1 (a) without BIV processing and (b) with BIV processing. While the

accuracy of the flight profile was almost equally accurate in both methods,

during the period that the drone was tracked, BIV processing resulted in an

increase in the tracking duration and hence range.

FIG. 11. (Color online) Estimated time delays of 21 sensor pairs (a) without

BIV processing, and (b) with BIV processing colour-coded according to

peak signal-to-noise ratio (PSNR). Not only did the bio-vision processing

improve the PSNR of the correlograms, it also made the tracking of the

peak more coherent, even at low PSNRs.
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calculated via Eq. (25). With the traditional broadband method,

the maximal PNSR is about 30 dB, while the bio-vision

achieved a PSNR improvement of around 10 dB. Figure 11(a)

illustrates that without bio-processing, the correlogram peaks

oscillate violently after 54.7 s, while with bio-processing, they

remain stable up to 85.2 s. This result indicates an improvement

in the tracking of 56%, which is even higher than the improve-

ment for the narrowband processing.

The GCF from the correlograms were also computed

according to Eq. (13). Figure 12 shows the GCF of FS1 with

and without bio-vision at time 6 s and 80 s, respectively. The

red crosses show the estimated bearing and elevation angles,

and the white lines the trajectory traces obtained from the

iMet data. This demonstrates that the BIV processing

resulted in higher contrast and more accurate peaks in the

GCF making the estimation of bearing and elevation more

accurate at longer ranges. When the UAV was near the

acoustic array, i.e., T¼ 6 s, the crosses for the traditional (a)

and bio-processed (b) lie on the iMet trace, indicating both

provide an accurate estimate of h and /. Note that the

highlighted area of Fig. 12(b) is larger than that in (a), which

was mainly due to the prolonged low-pass filtering effect in

the BIV (as in Fig. 10). When the UAV was far away from

the acoustic array, i.e., T¼ 80 s, traditional GCF lost track

and provided an incorrect estimate, as in Fig. 12(c).

However, with bio-vision processing the UAV was still visi-

ble in Fig. 12(c), and the estimate matches well with the

iMet trace.

Similar broadband processing was conducted for all

three flight scenarios (FS1–FS3). The flight parameters were

estimated through the NLS regression given by

k̂ ¼ arg min
k

X7

m¼1

XNt

k¼1

wmðtkÞjjd̂mðtkÞ � dmðtk; kÞjj2; (27)

where d̂mðtkÞ ¼ ½d̂
ðmÞ
12 ðtkÞ; d̂

ðmÞ
13 ðtkÞ;…; d̂

ðmÞ
67 ðtkÞ�T is the esti-

mated delay vector for the m-th small microphone array at time

step tk. dmðtk; kÞ ¼ ½dðmÞ12 ðtk; kÞ; dðmÞ13 ðtk; kÞ;…; dðmÞ67 ðtk; kÞ�T .

wmðtkÞ is the weighting function related to the corresponding

PSNR.

The flight parameters obtained from the NLS regression

are shown in Table III. For all flight scenarios, an accurate

estimate of flight parameters could be obtained using both

traditional and bio-vision methods, although in a few cases

FIG. 12. (Color online) Global coher-

ence field (GCF) of Matrice 600 with

acoustic payload (FS1) (a) without

BIV at t¼ 6 s, (b) with BIV at t¼ 6 s,

(c) without BIV at t¼ 80 s, and (d)

with BIV at t¼ 80 s. The red cross in

each image represents the global maxi-

mum and the white line the historical

trajectory of this maximum over time.
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the accuracy of the bio-vision method is worse than that of

the traditional approach. However, these differences in

accuracy were minor and are traded against large detection

range extensions. The reason for the discrepancies between

the BIV and traditional results is likely due to use of low-

pass filters by the former, which induces a small phase delay

within the data.

As in the narrowband technique, we plot the track of

UAV trajectory by broadband technique with the satellite

photograph as in Fig. 13. With the traditional method, the

maximum detectable slant range Rmax of the Matrice 600

(FS1), Skywalker X-8 (FS2), and Mavic Air (FS3) were

915.7 m, 901.1 m and 258.7 m, respectively. After bio-

processing, the maximum detectable range of these FSs

were 1360.5 m, 1204.7 m, and 336.7 m, indicating distance

improvements of 48.6%, 33.7%, and 30.2%, respectively

(see Table IV). It is worth noting that the Mavic Air has a

much shorter detection range because of its smaller size,

lower signal intensity, and higher spectral signature com-

pared with the other medium size UAVs.

Although all figures shown in this paper relate to flights

beginning with the UAV starting close to the microphones

(i.e., the SNR declines from that point on, and at towards

the end of the run any angular change is small), overall the

analysis is drawn from both the outward and the return legs

of the flights, i.e., it includes trajectories where the SNR

starts low and increases as the target approaches the

observer. This was to eliminate any potential influence of

“track extrapolation.”

In contrast to many traditional imaging systems that

operate with a single global or regional gain and attempt to

capture the world as faithfully as possible, the BIV operates

at multiple local time scales, uses pixel-wise integration and

manipulation, and employs self-adapting non-linear feed-

back between its stages. This enables it to process all parts

of the data in parallel, whilst simultaneously allowing

scene-independent adaptations between its components as

there is no concept of spatial (and thus spectral) structure in

the initial processing stages. Data elements considered

dynamic are accentuated, whilst static ones are condensed.

This allows the huge dynamic range of the real world to be

compressed into manageable bandwidth for optimal infor-

mation transmission and downstream processing across a

diverse range of environments. Consequently, although

extraneous coherent noise sources (e.g., interferers such as

petrol generators) will be accentuated relative to any back-

ground noise, consistent noise sources (such as a constant

generator) will be suppressed relative to variable sources

(such as a moving UAV), in the same way moving objects

are enhanced relative to stationary ones within the visual

system. Consequently, unless the temporal-spectral proper-

ties of extraneous signals completely overlay those of the

UAV targets, in which case they are indistinguishable, the

BIV processing will make it easier to discriminate inter-

ferers from the signals of interest. A detailed examination of

FIG. 13. (Color online) Estimated flight trajectory derived using broadband technique for FS1, FS2, and FS3, respectively.

TABLE IV. The acoustic detection range for different flight scenarios.

FS# UAV type Rmax w/o BIV Rmax w/ BIV Improvement

FS1 Matrice 600 915.7 m 1360.5 m 49%

FS2 Skywalker X-8 901.1 m 1204.7 m 34%

FS3 Mavic Air 258.7 m 336.7 m 30%

TABLE III. Flight parameter estimation with broadband technique.

FS# Method V̂ (m/s) ŝc(s) d̂ c(m) ĥ(m) âc(deg.)

3*FS1 iMet data 15.0 �4.1 136.3 101.2 182.0

Traditional 15.1 �4.3 131.8 97.8 181.8

Bio-vision 15.2 �4.4 134.9 99.9 181.5

3*FS2 iMet data 20.4 �7.5 147.8 210.1 179.9

Traditional 20.9 �7.1 148.5 211.9 179.9

Bio-vision 21.0 �7.3 155.0 214.8 180.3

3*FS3 iMet data 15.3 �5.7 130.2 98.3 181.2

Traditional 15.0 �5.3 122.1 100.3 181.3

Bio-vision 15.0 �5.8 123.6 102.0 181.5
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the topics of the influence of interference and track extrapo-

lation is beyond the scope of this paper and will be pub-

lished elsewhere.

VI. CONCLUSION

This paper presents the use of a bio-inspired signal

processing technique for detecting the acoustic signature of

UAVs. Two standard time-frequency processing methods,

based on narrowband and broadband techniques, were con-

sidered. Such approaches are commonly used by other

researchers in this field, and the ranges reported (prior to the

addition of any BIV signal conditioning) are similar to other

publicly reported findings for such experiments.16–18,23–25

The photoreceptor model of the insect vision system was

applied in conjunction with both these traditional methods.

Field trials using three different types of UAV (fixed and

rotary wing), and various flight scenarios show that for nar-

rowband processing the bio-vision technique improved the

maximum detection range by a factor of 33%, while for

broadband processing the bio-inspired method achieved

range extension of between 30% and 49%, depending on the

UAV model/type and flight scenario.

Recently BIV processing has been shown to greatly

increase the detection range of UAVs in both visual62 and

infrared37 data. However, this is the first time such a finding

has been translated to acoustic detection.

Compared with the traditional methods, the bio-vision

method also achieves comparable accuracy in flight parame-

ter estimation, indicating that the proposed method is accu-

rate and reliable. Since BIV is a pre-processing (signal

conditioning) technique it augments, not replaces, existing

detection and tracking methods. This means that BIV can be

integrated with other more complex UAV detection algo-

rithms. Furthermore, since it is causal and made up only of

relatively simple mathematical operations, BIV is also suit-

able for real-time applications. Optimisation of BIV parame-

ters against a defined goal would likely lead to a further

increase in performance, as has been observed in a different

context.63 However, such improvements are beyind the

scope of this paper. Future work includes verification using

more UAVs and flight scenarios, fusion of the narrowband

and broadband techniques, including further components in

the BIV processing pathway,64 and application of the BIV to

the real and imaginary components of the analytic signals

which would allow more accurate determination of the

mainlobe.
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